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From a microscopic analysis of the paramagnetic resonance line,the exchange- and motional-
narrowing phenomena are shown to be basically distinct. Exchange-narrowed lines are essen-
tially made up of the Fourier transform of the cross-correlation functions; motional-narrowed
lines are only formed by the Fourier transform of the self-correlation function.

In this paper, we wish to discuss the well-known
phenomenon of the narrowing of paramagnetic
resonance lines. This effect is caused by the ex-
change interactions between spins in solids or by
the motions of the atoms or molecules which carry
the spin in liquids. Usually, the theory is inves-
tigated from a macroscopic treatment of the cor-
relation function, whose frequency Fourier trans-
form gives the spectral resonance line. The
most complete theory had been given by Kubo and
Tomita.! These authors use a perturbation ex-
pansion, and in one general formalism they can
explain both the exchange and the motional nar-
rowing. The mathematical property which leads

to this result is the fact that the Hamiltonian op-
erators of the exchange or motional interactions,
E and M, respectively, commute with the com-
ponents a=x,y, z of the total spin

§:Ei§i7 (1)

$; being an individual spin:

[s*,{;]zo. @)

Thus, the understanding of these two phenomena is
apparently quite the same. The exchange in solids
causes rapid motion in the spin system, which pro-
duces an averaging out of the effects of the broad-
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ening interactions such as magnetic dipolar inter-
actions. In a roughly similar way, the tempera-
ture motion of atoms in liquids reduces the local
magnetic field seen by each spin 5;. However,

this microscopic explanation must be carefully
examined. One can obtain knowledge about the
motion of an individual spin by studying the spectral
function of the resonance line, not from a macro-

scopic point of view but from a microscopic analysis.

For N identical spins, the paramagnetic reso-
nance line is given by the frequency Fourier trans-
form F(w) of the macroscopic correlation function

G(t)___<eiFt/n Sxe-iFt/h Sr>/<sxz> . (3)

The interactions between spins are represented by
the Hamiltonian F. For solids, it is F=D%+E and
for liquids, F=D°+M, where D° is the secular
part of the magnetic dipolar spin-spin interactions.
Since we only want to concentrate our attention on
the narrowing phenomenon, we will not take into
account the nonsecular dipolar Hamiltonians and
consequently we ignore the “1J- effect.”

In order to express G(¢) by microscopic correla-
tion functions, we insert (1) in Eq. (3):

N
=% (eFtMsje M s/ 2 (s . @
i=1

i,i=1

Now, one can distinguish between the self-correla-
tion (i=4) and the cross-correlation (i #j) functions
of the individual spins. The correlation function
of the spin labeled 0 is defined by

go,i()=(e Tt/ M ske /M sy /(sE) | (5)

the Fourier transform of which is f(0,7; w). Since
all the spins are identical, the Fourier transform

FIG. 1. Full curves are the narrowed line shape F(w)
and the Fourier transform of the self-correlation function
f(0,0;w). The dashed curve represents the sum of the
Fourier transform of the cross-correlation functions
f0,4; w). Arbitrarily we have chosen w, ~10w,; then
A=~wy/10.
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FIG. 2. Full curve is the Fourier transform of the
self-correlation function given by Carboni and Richards
(Ref. 2) and the dashed curve is its opposite. The plots
(open circle) show the contribution of the first four
Fourier transforms of the cross-correlation functions.

of Eq. (4) which gives the resonance line becomes

F(w)=£(0,0; w)+ 25 £(0, i; w). (6)
i#0

Therefore, in any case, the resonance line is
made up of one self-correlation function together
with all the cross-correlation functions. Without
the narrowing Hamiltonians, each of these cor-
relations contributes to the spectral line F(w),
the width of which is of the order of w,~ (D2)V/2,
We must ask now what is the role of these corre-
lations in the presence of E or M.

In solids, when the exchange Hamiltonian E is
much larger than D°, F(w) is narrowed. The
linewidth becomes A= w?/w,, where w,~ (E%)!/2,
On the other hand, f(0, 0; w) is expected to exhibit
some components at very high frequency (the
Overhauser effect observed in insulators gives a
proof of this: There are components at w~ w,, the
electronic Larmor frequency). Roughly speaking,
the characteristic width of (0, 0; w) is w,. Now,
we notice that from the definition of the Fourier
transform we can deduce the following properties:

[ dwF ()= [ 2" dwf(0,0,w)=1.

Since the areas of F(w) and f(0, 0; w) are equal,
the amplitude of (0, 0; w) will be very small. In
Fig. 1 we have reconstituted F(w) from Eq. (6).
The full curves are F(w) and f(0, 0; w). Conse-
quently, the dashed line represents the sum of all
the cross-correlation spectra, that is, ;(#0,7(0, 7; w)
On this scheme we see clearly that the paramag-
netic resonance line F(w) expresses only the cross-
correlation effects and that for w> A the contribu-
tion of the cross correlation exactly cancels the
contribution of the self-correlation. This fact
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can be illustrated from the correlation functions
calculated by Carboni and Richards.? These
authors have performed numerical calculations in
the case of linear exchange chains. Indeed, the
spin motion is only due to the exchange Hamil-
tonian E. But for the present purpose, in the
high-frequency range (w> w,), their results may
be regarded as being still valid because D° only
affects the low-frequency range. Figure 2 shows
the sum § £(i, 0; w) restored from the frequency
Fourier transform of the first four cross-corre-
lation functions (i=—4--- +4) (Fig. 4 of Ref. 2)
and the self-correlation function f(0, 0; w) (Fig. 5
of Ref. 2). Their contributions are equal and op-
posite. Therefore, the other cross-correlation
functions must have a negligible influence.

In liquids, the motion Hamiltonian M of the atoms
or molecules is defined by coordinates which are
different from those of the spins. Thus, in the

3821

case of an individual spin, a commutation rule
equivalent to (2) is still valid:

[s¥, M]=0

Therefore, the self-correlation spectrum f(0, 0; w)
is narrowed in the same way as F(w), and in the
case of an extreme narrowing the contribution of
the cross correlation becomes quite negligible.

In conclusion, the macroscopically identical
behavior of the paramagnetic resonance line,
under the influence of either exchange or motion,
masks two quite distinct phenomena. In solids
with exchange interactions the line shape is due
to the correlations of one spin with all the others.
On the contrary, in liquids the line shape comes
from the self-correlation of one spin: The motion
completely “decorrelates” the spins amongst
themselves.
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The anharmonic Raman process, which was shown by Van Kranendonk and Walker to be im-
portant in the case of nuclear quadrupolar relaxation, is shown here to be of sufficient magni-
tude to explain the Raman relaxation rates of the paramagnetic ions Ccr® and Ni* in MgO.
This new relaxation process involves the anharmonic three-phonon interaction.

The theory of the spin-lattice relaxation of para-
magnetic ions in insulating crystals has recently
been reviewed by Stevens ! and by Abragam and
Bleaney.? Many of the more important original pa-
pers on the subject are contained in the book edited
by Manenkov and Orbach.? It is evident from these
articles that a major assumption of previous theor-
ies which has not been seriously questioned up to
the present is that the phanons can be treated in the
harmonic approximation. Recently, however, Van
Kranendonk and Walker * showed that a new relaxa-
tion process, which they called the anharmonic Ra-
man process, and which depends for its existence
on the anharmonic three-phonon coupling, is im-
portant in the theory of nuclear quadrupolar relaxa-
tion. More recently still, two papers ®'® concerned
with the derivation of the rate equations describing
spin-lattice relaxation in anharmonic crystals have
confirmed the existence of the anharmonic Raman

process described by Van Kranendonk and Walker.
There are as yet, however, no estimates of the
magnitudes of the relaxation rates predicted by this
process for paramagnetic ions. The purpose of
this paper is to show that the anharmonic Raman
process predicts relaxation rates having magnitudes
comparable to those observed in the cases of

MgO : Ni%* and MgO: Cr®. The main conclusion is
thus that the anharmonic Raman process deserves
serious consideration as a possible relaxation
mechanism for paramagnetic ions in crystals.

The Feynman diagram corresponding to the an-
harmonic Raman process is shown in Fig. 1(a), and
a somewhat different pictorial view of the same pro-
cess is shown in Fig. 2. An explicit mathematical
description of the anharmonic Raman process will
be given below.

In their analysis of nuclear quadrupolar relaxa-
tion, Van Kranendonk and Walker showed that the



